34 research outputs found

    Satellite-Based Communications Security: A Survey of Threats, Solutions, and Research Challenges

    Get PDF
    Satellite-based Communication systems are gaining renewed momentum in Industry and Academia, thanks to innovative services introduced by leading tech companies and the promising impact they can deliver towards the global connectivity objective tackled by early 6G initiatives. On the one hand, the emergence of new manufacturing processes and radio technologies promises to reduce service costs while guaranteeing outstanding communication latency, available bandwidth, flexibility, and coverage range. On the other hand, cybersecurity techniques and solutions applied in SATCOM links should be updated to reflect the substantial advancements in attacker capabilities characterizing the last two decades. However, business urgency and opportunities are leading operators towards challenging system trade-offs, resulting in an increased attack surface and a general relaxation of the available security services. In this paper, we tackle the cited problems and present a comprehensive survey on the link-layer security threats, solutions, and challenges faced when deploying and operating SATCOM systems.Specifically, we classify the literature on security for SATCOM systems into two main branches, i.e., physical-layer security and cryptography schemes.Then, we further identify specific research domains for each of the identified branches, focusing on dedicated security issues, including, e.g., physical-layer confidentiality, anti-jamming schemes, anti-spoofing strategies, and quantum-based key distribution schemes. For each of the above domains, we highlight the most essential techniques, peculiarities, advantages, disadvantages, lessons learned, and future directions.Finally, we also identify emerging research topics whose additional investigation by Academia and Industry could further attract researchers and investors, ultimately unleashing the full potential behind ubiquitous satellite communications.Comment: 72 page

    MAGNETO: Fingerprinting USB Flash Drives via Unintentional Magnetic Emissions

    Full text link
    Universal Serial Bus (USB) Flash Drives are nowadays one of the most convenient and diffused means to transfer files, especially when no Internet connection is available. However, USB flash drives are also one of the most common attack vectors used to gain unauthorized access to host devices. For instance, it is possible to replace a USB drive so that when the USB key is connected, it would install passwords stealing tools, root-kit software, and other disrupting malware. In such a way, an attacker can steal sensitive information via the USB-connected devices, as well as inject any kind of malicious software into the host. To thwart the above-cited raising threats, we propose MAGNETO, an efficient, non-interactive, and privacy-preserving framework to verify the authenticity of a USB flash drive, rooted in the analysis of its unintentional magnetic emissions. We show that the magnetic emissions radiated during boot operations on a specific host are unique for each device, and sufficient to uniquely fingerprint both the brand and the model of the USB flash drive, or the specific USB device, depending on the used equipment. Our investigation on 59 different USB flash drives---belonging to 17 brands, including the top brands purchased on Amazon in mid-2019---, reveals a minimum classification accuracy of 98.2% in the identification of both brand and model, accompanied by a negligible time and computational overhead. MAGNETO can also identify the specific USB Flash drive, with a minimum classification accuracy of 91.2%. Overall, MAGNETO proves that unintentional magnetic emissions can be considered as a viable and reliable means to fingerprint read-only USB flash drives. Finally, future research directions in this domain are also discussed.Comment: Accepted for publication in ACM Transactions on Embedded Computing Systems (TECS) in September 202

    Challenges of Radio Frequency Fingerprinting: From Data Collection to Deployment

    Full text link
    Radio Frequency Fingerprinting (RFF) techniques promise to authenticate wireless devices at the physical layer based on inherent hardware imperfections introduced during manufacturing. Such RF transmitter imperfections are reflected into over-the-air signals, allowing receivers to accurately identify the RF transmitting source. Recent advances in Machine Learning, particularly in Deep Learning (DL), have improved the ability of RFF systems to extract and learn complex features that make up the device-specific fingerprint. However, integrating DL techniques with RFF and operating the system in real-world scenarios presents numerous challenges. This article identifies and analyzes these challenges while considering the three reference phases of any DL-based RFF system: (i) data collection and preprocessing, (ii) training, and finally, (iii) deployment. Our investigation points out the current open problems that prevent real deployment of RFF while discussing promising future directions, thus paving the way for further research in the area.Comment: 7 pages, 1 table, and 4 figure
    corecore